7 for the system ethanol $+n$-heptane.

Literature Clted

(1) Flory, P. J.; Orwoll, R. A.; Vrij, A. J. Am. Chem. Soc. 1984, 86, 3507.
(2) Sanchez, T. C.; Lacombe, R. H. Macromolecules 1976, 11, 1145.
(3) Panayibtou, C. J. Phys. Chem. 1968, 92, 2960.
(4) Klyohara, O.; Benson, G. C. J. Chem. Thermocyn. 1979, 11, 861.
(5) Benson, G. C. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1988, 4, 254.
(6) Kouris, S.; Panayiotou, C. J. Chem. Eng. Data 1089, 34, 200.
(7) Papaioannou, D.; Panayiotou, C. J. Colfoid Interface Scl. 1980, 130, 432.
(8) Panayiotou, C. Pure Appl. Chem. 1889, 61, 1453.
(9) Kell, G. S.; Whalley, E. J. Chem. Phys . 1975, 62, 3496.
(10) Machado, J. R. S.; Street, W. B. J. Chem. Eng. Data 1083, $28,218$.
(11) Kubota, H.; Tanaka, Y.; Makita, T. Int. J. Thermophys. 1987, 8, 47.

Recelved for review November 6, 1989. Revised June 5, 1990. Accepted July 9, 1990. We are grateful to the General Secretariat of Research and Technology of Greece for financial support.

Volumetric Properties of Binary Mixtures. 2. Mixtures of n-Hexane with Ethanol and 1-Propanol

C. Ormanoudls, C. Dakos, and C. Panayiotou*
Department of Chemical Engineering and Chemical Process Engineering Research Institute, Universlty of Thessaloniki, 54006 Thessaloniki, Greece

Abstract

In the second part of thls serles of papers we report experimental densities for the binary mixtures n-hexane + ethanol and n-hexane +1 -propanol. The pressure range at 298.15 K is from 1 to 340 bar. At atmospheric pressure the densifies have been measured also at 288.15 and 308.15 K . The data have been used for calculating excess volumes, isothermal compressibilities, and thermal expansion coefficlents. In addition ultrasound velocity measurements are reported that have been used for calculating lsentroplc compressibilities.

Introduction

Mixtures of 1-alkanols with n-alkanes have attracted particular attention in the thermodynamic literature. IUPAC has already organized five international workshops on the vapor-liquid equilibria and related properties of these systems. New theoretical approaches for data correlation and prediction in alkanol + alkane mixtures are based on equation-of-state theories, which are extended to account for hydrogen bonding and formation of association complexes (1-3). Volumetric properties of pure components and mixtures are of particular importance in the implementation of these new theoretical approaches. However, as it was pointed out in part 1 of this series of paper (4), the usefulness of volumetric properties is not confined to equation-of-state theories.

In the second part of this series of papers we report experimental densities at 298.15 K and in the pressure range from 1 to 340 bar for the mixtures of n-hexane with ethanol and 1-propanol. Densities at atmospheric pressure and at two other temperatures are also reported. In addition, ultrasound velocity measurements have been conducted, and the results have been used for calculating isentropic compressibilities.

Experimental Section

Materlals. Pure ethanol and n-hexane used in this work were pro analysi grades from Merck while 1-propanol was a puriss. grade from Fluka. Their purity was determined by gas-liquid chromatography and was better than 99.8% for ethanol, better than 99.0% for n-hexane, and better than 99.5% for 1 -propanol. Pure liquids have been used as recelved without any further purification. The mixtures were prepared

[^0]by weight with precisions of 0.0001 g . 50 mL flasks with septum caps and magnetic stirring bars were used. The inftial vapor space in the flask was less than $3 \mathrm{~cm}^{3}$. Because of the small vapor space and the reproducibility of density measurements, no gas corrections were applied.

Density. The experimental setup for the density measurements was described previously (4). At atmospheric pressure the densities, ρ, have been measured in a vibrating tube densitometer, Model DMA 60/602 of Anton Paar. At higher pressures, a high-pressure density cell was used that consisted of a high-pressure density cell, Model DMA 512 of Anton Paar, a homemade compression cell, and a dead-weight tester, Model MTU600 of Metronex. No hysteresis was observed in the density measurements by increasing and then decreasing the external pressure. The temperature in the measuring cells was regulated through a Haake ultrathermostat and was kept constant to within 0.01 K , as measured by a precision digital thermometer, Model S1220 of Systemteknik. The estimated error in the density measurement at atmospheric pressure is $5 \times 10^{-6} \mathrm{~g} / \mathrm{cm}^{3}$. The corresponding error with the high-pressure cell is $1 \times 10^{-4} \mathrm{~g} / \mathrm{cm}^{3}$.

Ultrasonic Velocity. As previously reported (4), the ultrasound velocity was measured in sing-around equipment, Model RN-1A of DHN, at a resonance frequency of 4 MHz . The sound velocity, c, is related to the signal frequency, f, as follows:

$$
\begin{equation*}
\frac{1}{f}=\frac{L}{c}+\tau \tag{1}
\end{equation*}
$$

where L is the distance between the transducers and τ is the delay time of the impulse in the circuit. These are equipment constants.

Results and Discussion

The densities of the binary mixtures at each composition have been measured at 30 pressures between 1 and 340 bar. Selected data for 10 pressures are reported in Tables I and II. The complete sets of data are available upon request. In Figure 1 are compared our experimental data with literature data (5). As can be seen, our experimental data are in good agreement with literature values. The sets of data that have been used for callibrating our density cell are those of Kell and Whalley (6) for water and those of Machado and Street (7) for methanol. On the basis of the experimental densitles, we may calculate the molar volume of mixing V^{E} (excess volume) at each pressure according to eq 2 of the previous paper in this

Table I. Experimental Densities ρ for the System Hexane (1) + Ethanol (2) at 298.15 K as a Function of Pressure Pand Mole Fraction x_{1} of Hexane

Table II. Experimental Densities ρ for the System Hexane (1) + 1-Propanol (2) at 298.15 K as a Function of Pressure P and Mole Fraction x_{1} of Hexane

	ρ at various $P /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$									
x_{1}	1.01 bar	20.0 bar	39.9 bar	79.6 bar	119.4 bar	159.1 bar	198.9 bar	258.6 bar	298.3 bar	338.1 bar
0.0000	0.7996	0.8010	0.8025	0.8054	0.8082	0.8110	0.8137	0.8176	0.8202	0.8226
0.0996	0.7766	0.7781	0.7797	0.7827	0.7857	0.7885	0.7913	0.7954	0.7981	0.8007
0.3007	0.7368	0.7384	0.7401	0.7434	0.7466	0.7497	0.7528	0.7572	0.7600	0.7628
0.4087	0.7195	0.7212	0.7229	0.7263	0.7297	0.7329	0.7360	0.7405	0.7435	0.7463
0.5031	0.7060	0.7077	0.7095	0.7130	0.7164	0.7197	0.7229	0.7276	0.7305	0.7334
0.5999	0.6936	0.6954	0.6972	0.7008	0.7042	0.7076	0.7109	0.7155	0.7186	0.7215
0.7008	0.6819	0.6837	0.6856	0.6892	0.6927	0.6962	0.6995	0.7043	0.7074	0.7103
0.7984	0.6719	0.6737	0.6755	0.6792	0.6828	0.6863	0.6897	0.6945	0.6976	0.7005
0.8513	0.6669	0.6687	0.6706	0.6743	0.6779	0.6814	0.6848	0.6896	0.6927	0.6957
0.9316	0.6600	0.6619	0.6638	0.6675	0.6712	0.6747	0.6781	0.6829	0.6860	0.6890
1.0000	0.6549	0.6567	0.6587	0.6624	0.6661	0.6696	0.6730	0.6779	0.6810	0.6839

Figure 1. Experimental density ρ of pure 1-propanol at 298.15 K as a function of pressure P: D , Kubota et al. (5); Δ, this work.
issue. Excess volume is a very sensitive quantity and may be used for assessing the quality of the density measurements.

In Figures 2 and 3 are shown the excess volumes of the two binary systems at three representative pressures. The maximum excess volume is diminished with pressure in a stmilar way for both systems. However, the highly asymmetric character of the excess volume curves for the mixture of n-hexane with 1-propanol leads to a crossing of the curves in the side of the less compressible 1-propanol, as shown in Figure 3. S-shaped excess volume curves are quite common in 1-alkanol $+n$ alkane mixtures $(1-3)$ at atmospheric pressure. The persistence of this S-shape with pressure is a subject of further investigation. In Figures 2 and 3 are also shown excess volumes at 1 atm measured with the low-pressure density cell, type DMA

Figure 2. Excess molar volume V^{E} at 298.15 K for the system n hexane (1) + ethanol (2) at various pressures P as a function of the mole fraction x_{1} of hexane: $O, P=1.01$ bar with the DMA 602 cell; $\square, P=1.01$ bar with the DMA 512 cell; $\Delta, P=198.9$ bar; $\diamond, P=$ 338.1 bar.

602 of Anton Paar. As can be seen, the two sets of data measured with the two cells are in good agreement.
At each composition, the complete set of experimental densities (30 data points) has been used for the determination of the coefficients of the fourth-order polynomial

$$
\begin{equation*}
1 /\left(\rho /\left(\mathrm{g} \mathrm{~cm}^{-3}\right)\right)=\sum_{i=0}^{4} a_{i}(P / \mathrm{bar})^{\prime} \tag{2}
\end{equation*}
$$

Coefficients a_{1} of eq 2, along with the standard deviation of fit, σ, are reported in Tables III and IV. Equation 2 has subsequently been used for the evaluation of the isothermal com-

Table III. Coefficients a_{i} in Equation 3 and Standard Deviation $\sigma(\rho)$ for the System Hexane (1) + Ethanol (2) at 298.15 K at Mole Fraction x_{1} of Hexane

x_{1}	a_{0}	$a_{1} / 10^{-3}$	$a_{2} / 10^{-7}$	$a_{3} / 10^{-10}$	$a_{4} / 10^{-13}$	$\sigma(\rho) /\left(10^{-5} \mathrm{~g} \mathrm{~cm}^{-3}\right)$
0.0000	1.273797	-0.13739	0.68293	-0.562 54	0.48731	2
0.0499	1.29846	-0.14935	0.90230	-0.84137	0.57010	3
0.1002	1.320588	-0.15814	0.97909	-0.84699	0.42646	3
0.1496	1.340726	-0.166 27	1.03765	-0.63761		3
0.2008	1.359865	-0.17585	1.26030	-1.27062	0.71161	3
0.3020	1.392757	-0.18914	1.36845	-1.02925		3
0.4196	1.425309	-0.20335	1.55625	-1.21012		3
0.5485	1.455626	-0.214 12	1.35687		-1.53964	3
0.5998	1.466209	-0.21717	1.36695		-1.635 29	3
0.6992	1.484948	-0.22612	1.63602	-0.87582	-0.56967	3
0.8004	1.501441	-0.232 27	1.79702	-1.35675		3
0.8973	1.515191	-0.23739	1.85397	-1.39130		3
0.9493	1.521719	-0.23882	1.86337	-1.41481		3
0.9666	1.523984	-0.23959	1.87925	-1.44091		3
1.0000	1.527240	-0.23158	1.33080	-0.84553	0.92551	2

Table IV. Coefficients a_{i} in Equation 3 and Standard Deviation $\sigma(\rho)$ for the System Hexane (1) +1 -Propanol (2) at 298.15 K at Mole Fraction x_{1} of Hexane

x_{1}	a_{0}	$a_{1} / 10^{-3}$	$a_{2} / 10^{-7}$	$a_{3} / 10^{-10}$	$a_{4} / 10^{-13}$	$\sigma(\rho) /\left(10^{-5} \mathrm{~g} \mathrm{~cm}^{-8}\right)$
0.0000	1.250687	-0.11464	0.08589	1.26223	-1.664 18	2
0.0996	1.287732	-0.13098	0.51921		-0.34574	3
0.3007	1.357346	-0.15806	0.63346		-0.12744	3
0.4087	1.389981	-0.17131	0.69484			3
0.5031	1.416536	-0.18091	0.50814	1.14720	-1.54792	3
0.5999	1.441947	-0.194 52	0.89431		-0.26199	3
0.7008	1.466618	-0.20282	0.78647	0.22780		3
0.7984	1.488658	-0.213 86	0.97860			3
0.8513	1.499765	-0.21850	1.02035		-1.387025	3
0.9316	1.515300	-0.22558	1.17144	-0.43454	0.482058	3
1.0000	1.527240	-0.23158	1.33080	-0.84553	0.92551	2

Table V. Experimental Sound Velocities cand Calculated Isentropic Compressibilities β_{S}, Equation 5, for the System Hexane (1) + Ethanol (2) at 298.15 K and Atmospheric Pressure as a Function of the Mole Fraction x_{1} of Hexane

	$c /$ $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	$\beta_{S} /$ $\left(10^{-9} \mathrm{~Pa}^{-1}\right)$	x_{1}	$c /$ $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	$\beta_{S} /$ $\left(10^{-9} \mathrm{~Pa}^{-1}\right)$
0.0000	1142.4	0.9757	0.6989	1065.6	1.3075
0.0999	1114.6	1.0625	0.7989	1066.6	1.3198
0.2989	1085.0	1.1824	0.8996	1069.5	1.3250
0.3968	1077.7	1.2221	0.9498	1071.6	1.3253
0.4995	1072.1	1.2567	1.0000	1076.6	1.3174

Figure 3. Excess molar volume V^{E} for the system n-hexane (1) + 1-propanol (2) at 298.15 K at various pressures P as a function of the mole fraction x, of hexane: O, $P=1.01$ bar with the DMA 602 cell; ロ, $P=1.01$ bar with the DMA 512 cell; $\Delta, P=198.9$ bar; $0, P=$ 338.1 bar.
pressibilities, β_{T}, of the mixtures given by eq 4 of the previous paper in this issue.

In Flgures 4 and 5 are shown isothermal compressibilty data for the two systems at three representative pressures. As can

Flgure 4. Isothermal compressibility β_{T} for the system n-hexane (1) + ethanol (2) at 298.15 K at various pressures P as a function of the mole fraction x_{1} of hexane. $\square, P=1.01$ bar; $\Delta, P=198.9$ bar; θ, $P=338.1$ bar.

Table VI. Experimental Sound Velocities c and Calculated Isentropic Compressibilities β_{S}, Equation 5, for the System Hexane (1) + 1-Propanol (2) at 298.15 K and Atmospheric Pressure as a Function of the Mole Fraction x_{1} of Hexane

x_{1}	$\left.c / \mathrm{m} \mathrm{s}^{-1}\right)$	$\beta_{S} /$ $\left(10^{-9} \mathrm{~Pa}^{-1}\right)$	x_{1}	$c /$ $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	$\beta_{S} /$ $\left(10^{-9} \mathrm{~Pa}^{-1}\right)$
0.0000	1205.3	0.8609	0.4994	1104.7	1.1598
0.1010	1175.2	0.9333	0.6997	1085.9	1.2435
0.2027	1151.2	0.9988	0.7977	1077.9	1.2810
0.2995	1131.0	1.0606	0.8998	1074.0	1.0388
0.3996	1115.1	1.1157	1.0000	1076.6	1.3174

be seen in both, the isothermal compressibility is larger than the additively calculated value, the difference decreasing with increasing pressure. β_{Γ} itself is also diminished significantly as the pressure increases.

Figure 5. Isothermal compressibility β_{T} for the system n-hexane (1) +1 -propanol (2) at 298.15 K at varibus pressures P as a function of the mole fraction x, of hexane. Symbols as in Figure 4.

Figure 8. Isentropic compressibility β_{s} for the system n-hexane (1) + ethanol (2) at 298.15 K at atmospheric pressure as a function of the mole fraction x_{1} of hexane.

Primary ultrasound velocity measurements are reported in Tables V and VI, along with the isentropic compressibilities calculated by

$$
\begin{equation*}
\beta_{s}=\frac{1}{\rho c^{2}} \tag{3}
\end{equation*}
$$

From classical thermodynamics β_{S} is related to β_{T} according to the equation

$$
\begin{equation*}
\beta_{S}=\beta_{T}-\frac{V T \alpha^{2}}{C_{P}} \tag{4}
\end{equation*}
$$

where C_{P} is the molar heat capacity at constant pressure, V is the molar volume of the system, and α is the cublc expansion coefficient. As indicated by eq $4, \beta_{S} \leq \beta_{\Gamma}$ always. Figures 4 and 6 are in conformity with this thermodynamic requirement.

In Tables VII and VIII are reported experimental densities at atmospheric pressure and for temperatures different from 298.15 K. These data (at three temperatures) are not sufficlent for an accurate estimation of the cubic expansion coefficlent of the liquids. They may, however, be used for an approxiniate estimation of it by the equation

$$
\begin{equation*}
\alpha=-\rho\left(\frac{\Delta \rho}{\Delta T}\right)_{P} \tag{5}
\end{equation*}
$$

Table VII. Experimental Densities ρ for the System Hexane (1) + Ethanol (2) at Temperature T and Atmospheric Pressure as a Function of the Mole Fraction x_{1} of Hexane

	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$			$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	
	$T=$	$T=$		$T=$	$T=$
x_{1}	288.15 K	308.15 K	x_{1}	288.15 K	308.15 K
0.0000	0.7937	0.7764	0.6989	0.6827	0.6641
0.1000	0.7661	0.7486	0.7989	0.6752	0.6567
0.2989	0.7274	0.7093	0.8996	0.6689	0.6504
0.3968	0.7137	0.6953	0.9498	0.6662	0.6478
0.4995	0.7014	0.6828		1.0000	0.6639

Table VIII. Experimental Densities ρ for the System Hexane (1) +1 -Propanol (2) at Temperature T and Atmospheric Pressure as a Function of the Mole Fraction x_{1} of Hexane

	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$			$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$		
	$T=$	$T=$		$T=$	$T=$	
\boldsymbol{x}_{1}	288.15 K	308.15 K	x_{1}	288.15 K	308.15 K	
0.0000	0.8077	0.7916		0.4994	0.7153	0.6973
0.1010	0.7840	0.7673		0.6997	0.6911	0.6727
0.2027	0.7634	0.7465	0.7977	0.6812	0.6627	
0.2996	0.7455	0.7282	0.8998	0.6717	0.6533	
0.3996	0.7299	0.7124	1.0000	0.6639	0.6459	

Figure 7. Cubic expansion coefficient α for the system n-hexane (1) + ethanol (2) at 298.15 K and atmospheric pressure as a function of the mole fraction x_{1} of hexane.

The density data of the above tables are first fitted to RedlichKister polynomials for the necessary interpolations. Thermal expansion coefficients from such calculations are shown in Figure 7 for the system ethanol $+n$-hexane.
The present data when coupled with relevant calorimetric data for C_{P} may lead to an estimation of C_{V} since

$$
\begin{equation*}
c_{V}=c_{P} \frac{\beta_{S}}{\beta_{T}} \tag{6}
\end{equation*}
$$

When C_{P} data are available, eq 4 may be used as a consistency test of the experimental data for $\alpha, \beta_{S}, \beta_{T}$, and C_{P}.

Llierature Clited

(1) Heintz, A. Ber. Bunsen-Ges. Phys. Chem. 1985, 89, 172.
(2) Treszczanowicz, A.; Benson, G. Fhid Phase Equil. 1985, 23, 117.
(3) Panayiolou, C. J. Phys. Chem. 1988, 92, 2980.
(4) Papaioannou, D.; Zlakas, D.; Panaylotou, C. J. Chem. Eng. Data, previous paper in this issue.
(5) Kubota, H.; Tanaka, Y.; Makita, T. Int. J. Thermophys. 1087, 8, 47.
(6) Kell, G. S.; Whalley, E. J. Chem. Phys. 1075, 62, 3496.
(7) Machado, J. R. S.i' Streett, W. B. J. Chem. Eng. Data 1083, 28, 218.

Received for review November 20, 1989. Accepted June 5, 1990. We are
grateful to the General Secretarlat for Research and Technology of Greece grateful to the General Secretarlat for Research and Technology of Greece for financlal support.

[^0]: - Author to whom correspondence should be addressed.

